Direct Observation of Fe-N4 Species as Active Sites for the Electrocatalytic Oxygen Reduction
نویسندگان
چکیده
منابع مشابه
Highly Active Fe Sites in Ultrathin Pyrrhotite Fe7S8 Nanosheets Realizing Efficient Electrocatalytic Oxygen Evolution
Identification of active sites in an electrocatalyst is essential for understanding of the mechanism of electrocatalytic water splitting. To be one of the most active oxygen evolution reaction catalysts in alkaline media, Ni-Fe based compounds have attracted tremendous attention, while the role of Ni and Fe sites played has still come under debate. Herein, by taking the pyrrhotite Fe7S8 nanoshe...
متن کاملnano-rods zno as an efficient catalyst for the synthesis of chromene phosphonates, direct amidation and formylation of amines
چکیده ندارد.
Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting.
Highly active catalysts for the oxygen evolution reaction (OER) are required for the development of photoelectrochemical devices that generate hydrogen efficiently from water using solar energy. Here, we identify the origin of a 500-fold OER activity enhancement that can be achieved with mixed (Ni,Fe)oxyhydroxides (Ni(1-x)Fe(x)OOH) over their pure Ni and Fe parent compounds, resulting in one of...
متن کاملElectrocatalytic Oxygen Reduction Reaction
Oxygen (O2) is the most abundant element in the Earth’s crust. The oxygen reduction reaction (ORR) is also the most important reaction in life processes such as biological respiration, and in energy converting systems such as fuel cells. ORR in aqueous solutions occurs mainly by two pathways: the direct 4-electron reduction pathway from O2 to H2O, and the 2-electron reduction pathway from O2 to...
متن کاملEnhancing Electrocatalytic Oxygen Reduction on Nitrogen-Doped Graphene by Active Sites Implantation
The shortage of nitrogen active sites and relatively low nitrogen content result in unsatisfying eletrocatalytic activity and durability of nitrogen-doped graphene (NG) for oxygen reduction reaction (ORR). Here we report a novel approach to substantially enhance electrocatalytic oxygen reduction on NG electrode by the implantation of nitrogen active sites with mesoporous graphitic carbon nitrid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nano Advances
سال: 2017
ISSN: 2415-1386
DOI: 10.22180/na212